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1 Motivation 8 

Van Cranenburgh and Kouwenhoven (under review) propose a new nonparametric method to 9 
uncover the Value-of-Travel-Time (VTT) distribution using data from a binary within-mode 10 
experiment (in which decision makers have to choose between a slow and cheap alternative and a 11 
fast and expensive alternative). In the core of this method – which we henceforth refer to as CK 12 
method – is an Artificial Neural Network (ANN). The ANN aims to approximate individual level 13 
choice models. It does so by capturing associations between the tuple of explanatory variables 14 
(the series of T choices, the received Boundary Value-of-Travel-Times1 (BVTTs), and a set of 15 
socio-demographic variables), and the dependent variable: the probability of choosing the fast 16 
and expensive alternative in the ‘next’ T+1th choice task. The CK method is appealing as it 17 
uncovers the VTT distribution (and its moments) without making strong assumptions on the 18 
underlying behaviour. Moreover, the method incorporates covariates, accounts for panel effects 19 
and yields a distribution right of the maximum received BVTT.  20 
 21 
But, while the empirical performance of ANNs is often found to be superior over those of theory-22 
driven statistical techniques (Paliwal and Kumar 2009), a severe limitation of ANNs –and by 23 
extension of the CK method– is their intractability. ANNs are widely considered black boxes 24 
(Castelvecchi 2016). Amongst other things, this is because it is impossible to interpret or 25 
diagnose ANNs by looking at the weights obtained after training the network. In fact, the weights 26 
will tell the analyst nothing about whether the ANN has learned intuitively correct relationships, 27 
as opposed to spurious ones, or about the importance of attributes. Not even the signs of the 28 
weights can meaningfully be interpreted. This relates to the indeterminacy of ANNs. Even in 29 
single-layer ANNs there are many symmetric solutions (Sussmann 1992). This limitation 30 
hampers (1) learning from the ANN, (2) improving the ANN, and (3) diagnosing the ANN (e.g. 31 
can we trust the model’s predictions?).  32 
 33 
In the way the ANN is used in the CK method, it can be perceived as a juiced-up logistic 34 
regression model. The juicing-up comes from the hidden layers, which allow the ANN to capture 35 
nonlinearities and interactions between the explanatory variables. In case we would remove the 36 
hidden layers, what is left is a ‘standard’ logistic regression model (Bishop 1995). After all, the 37 
explanatory variables in the input layer then directly enter the output layer, where a softmax 38 
                                                      
1 In binary two-attribute VTT choice data, the boundary value of time is the implicit price of the time 
difference between the two alternatives. 
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function is applied. The softmax function is a logit transformation. While a logistic regression 39 
model is a data-driven model, a clear advantage of a logistic regression model over an ANN is 40 
that it is not a black box; the model and its parameters can readily be interpreted. But, doing so 41 
comes at a cost. It is not capable to capture nonlinearities and complex interactions, i.e. unless 42 
they are explicitly programmed by the analyst.  43 
 44 
In this research note we explore using a standard logistic regression model in CK’s method, 45 
instead of the ANN. The logistic regression model can be seen as a simplified, but tractable proxy 46 
of the ANN. Thereby, we aim to shed light on how the ANN recovers the VTT distribution in 47 
CK’s method. Although the regression model is a proxy for the ANN, it may be able to provide a 48 
deeper theoretical understanding on how the ANN works. Furthermore, it may reveal empirical 49 
insights. For instance, the sign and strength of the main effects could be made transparent.  50 
 51 
To conduct this exploration, we take the following steps. We start with the ANN as depicted in 52 
Van Cranenburgh and Kouwenhoven (under review) Figure 2, and remove the hidden layers. 53 
What is left is a logistic regression model. However, this model does not immediately work.  54 
Therefore, we make a number of modifications to this regression model. Next, we estimate the 55 
parameters of the regression model using the same data as in Van Cranenburgh and 56 
Kouwenhoven (under review) and recover the individual level VTTs. We interpret the regression 57 
parameters and compare the recovered VTT distribution to that recovered using the ANN and to 58 
those of other parametric and nonparametric methods. Finally, we show that the logistic 59 
regression model can be casted in the form of a Random Valuation (RV) model.  60 
 61 
The remainder of this research note is organised as follows. Section 2 builds the logistic 62 
regression model. Section 3 presents the empirical results and compares the recovered VTT 63 
distribution by the logistic regression model to those of other methods. Section 4 examines how 64 
the logistic regression model relates to RV models. Section 5 provides conclusions.  65 
 66 

2 The logistic regression model 67 

2.1 Building the logistic regression model 68 

We start by replacing Equation 3 of Van Cranenburgh and Kouwenhoven (under review) with a 69 
logistic regression model, see Equation 1. That is, we remove the hidden layers. As such, this 70 

equation is a ‘one-to-one’ conversion of the ANN into a logistic regression model, where 2
nP71 

denotes the probability that decision maker n chooses the fast and expensive alternative. The first 72 

term of 2
nv , δ, is the regression intercept. The second term of 2

nv captures the effect of presented 73 

BVTTs in choice tasks t = 1...T; the third term captures the effect of the experimental covariates 74 
in choice tasks t = 1...T; the fourth term captures the effect of the choices in choice tasks t = 1...T; 75 
the fifth term captures the effect of the generic covariates dr, and the sixth and seventh terms 76 
capture respectively the effects of the BVTT and experimental covariates in the choice task T+1. 77 
Note that in our data we have just one experimental covariate, the quadrant; hence no summation 78 
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is used there. Furthermore, choice task R, see Figure 2 in Van Cranenburgh and Kouwenhoven 79 
(under review) is not included. We will discuss this in section 2.3. 80 
 81 
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 82 
However, the regression model in Equation 1 will not immediately work since in this form it does 83 
not ‘see’ which BVTTs are accepted, and which are not. To let the regression model see this, 84 
rather than using the BVTTs (second term) and the choices (fourth term) separately, we use the 85 
interaction between the two, see Equation 2. In this way the interaction parameter, denoted βy·bvtt, 86 
captures the effect of accepted propositions conditional on the received BVTTs. We expect a 87 
positive sign for βy·bvtt as higher accepted BVTTs is expected to correlate positively with the 88 
probability of choosing the fast and expensive alternative in choice task T+1. Likewise, the third 89 
term in Equation 1 will not work in this form as the regression model does not see the effect of 90 
the experimental covariates (the quadrants) on the choice made in particular choice tasks. While it 91 
is also possible to incorporate these experimental covariates by means of interactions (like is done 92 
for the choices), for clarity of exposition we drop this term here. However, note that the effect of 93 
the quadrants on the T+1 choice task is directly accounted for (last term).  94 
 95 

 1 1
2 1 1

1 1

T R
n t n n n T n T n

y bvtt t t r r bvtt T s T
t r

v y bvtt d bvtt s     
  

 

       
 

Equation 2 

 

 96 
We can simplify the regression model, by reducing the number of estimable weights. In 97 
particular, we expect the weights associated with the interaction between y and bvtt to be equal 98 

across tasks t = 1...T, i.e. t
y bvtt y bvtt t     . After all, order effects are taken out since the data 99 

are shuffled in random order (see Section 2.2). In Van Cranenburgh and Kouwenhoven (under 100 
review), section 2.3, it is also noted that the ANN consumes more weights than strictly needed. 101 
However, in the context of the ANN equal weights are not imposed as this would make the CK 102 
method less accessible: it would then require specialised software. But, in the context of the 103 
logistic regression model imposing equal parameters can readily be done. This simplifies the 104 
second term of Equation 2 to Equation 3. 105 
 106 
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2.2 Model estimation 109 

To estimate the regression model, we take the following steps. First, for each respondent we 110 
randomly select one choice task, which serves as the dependent choice task (T+1). After that, we 111 
estimate the logistic regression model using a standard Maximum likelihood based approach. 112 
Note that as a result of our modifications there is no need to permute the data numerous times, as 113 
is the case for the CK method. After all, for the logistic regression model we are able to directly 114 
estimate the generic βy·bvtt parameter. 115 
 116 
Table 1 shows the regression results.2 Based on Table 1 a number of observations can be made.  117 
First, the ρ2 of 0.40 indicates the model fits the data well, although not as good as the ANN, 118 
which achieved a ρ2 of 0.49 (based on out-of-sample data). The model fit is roughly the same as 119 
the RV models which include random parameters; see Van Cranenburgh and Kouwenhoven 120 
(under review). But, it should be noted that the rho squares cannot one-to-one be compared, as the 121 
fit of the logistic regression model is conditional on the previous choices made while the RV 122 
models are unconditional. Second, the explanatory variables have the expected and intuitive 123 
correct signs (apart from a few generic covariates that are found to be insignificant). In particular, 124 
we see that βy·bvtt is positive and highly significant. This means that accepting high BVTTs 125 
increases the probability of choosing the fast and expensive alternative in task T+1.  126 
 127 

Looking at the explanatory variables associated with choice task T+1, we see that 1T
bvtt  is 128 

negative and highly significantly different from one. This is also expected since a higher BVTT in 129 
choice task T+1 is expected to reduce the probability of choosing the fast and expensive 130 
alternative. With regard to the effect of the quadrants in choice task T+1, in line with 131 
expectations, we see the estimates are of EL, EG and WTP are all negative. This means the 132 
probability of choosing the fast and expensive alternative decreases when the T+1th choice task is 133 
presented in the EL, EG, or WTP domain instead of in the WTA domain.  Finally, most of the 134 
covariates are insignificantly different from zero, except for a few covariates for which we expect 135 
strong effects on the VTT, such as the highest income levels. Apparently, the choices made in 136 
choice tasks 1 to T explain a large portion of the heterogeneity in the VTT, leaving less to be 137 
explained by the covariates.  138 
 139 

Table 1: Logistic regression results 140 

                                                      
2 Note that we used dummy coding for socio demographic variables and the quadrants  
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 141 
 142 
 143 

2.3 Recovery of individual level VTTs 144 

Recovery of individual level VTTs from the estimated logistic regression model is fairly 145 
straightforward. Unlike in the case of the ANN, we can derive the VTTs analytically. In other 146 
words, there is no need to simulate choice probabilities. Specifically, from Equation 1 it can be 147 
seen that an individual is indifferent between the fast and expensive alternative and the slow and 148 

No. observations

No. parameters

Null LogLikelihood

Final LogLikelihood

ρ ²

Est. SE t-stat p-val

Intercept

δ -0.572 0.288 -1.99 0.05

t = 1…T

β y ·bvtt 0.038 0.002 24.14 0.00

t = T+1

-0.142 0.005 -30.02 0.00

βWTA 0.000 fixed

βEL -0.218 0.096 -2.27 0.02

βEG -0.356 0.099 -3.60 0.00

βWTP -0.704 0.109 -6.46 0.00

Mode

Car 0.000

Public transport -0.284 0.124 -2.29 0.02

Bus -0.239 0.171 -1.40 0.16

Train -0.002 0.168 -0.01 0.99

Gender

Male 0.000

Female 0.002 0.077 0.02 0.98

Age

18-20 0.000

21-35 0.277 0.276 1.00 0.32

36-50 0.100 0.279 0.36 0.72

51-64 -0.147 0.280 -0.53 0.60

65+ -0.116 0.292 -0.40 0.69

Purpose (short distance)

Return home 0.000

Travel to the workplace 0.058 0.110 0.52 0.60

Leisure/excerise activities -0.238 0.143 -1.66 0.10

Commute -0.003 0.114 -0.03 0.98

Long/short distance

Short 0.000

Long 0.409 0.147 2.78 0.01

Personal gross income

Under 300 000 NOK/year 0.000

300 001 - 400 000 NOK/yr. 0.234 0.107 2.20 0.03

400 001 - 500 000 NOK/yr. 0.453 0.113 4.01 0.00

+500 001 NOK/yr 0.621 0.114 5.44 0.00

Do not know / No answer 0.216 0.174 1.24 0.22

Current trip characteristics

Travel time -0.001 0.000 -1.89 0.06

Travel cost 0.006 0.001 4.33 0.00

-2435.4

0.40

5832

24

-4042.4

1T
bvtt 
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cheap alternative in case 2
nv  equals zero. Therefore, setting 2

nv  to zero in Equation 3 and solving 149 

it for 1T
nbvtt   gives us the individual level VTT (Equation 4).  150 
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 152 
In the CK method an additional set of nodes is added to the network architecture for choice task 153 
R. Choice task R is a randomly selected replication of one of the T explanatory choice tasks. This 154 
is done to ensure that all information on choices and BVTTs for a respondent can be used when 155 
simulating the choice probabilities, which is the intermediate step towards recovering the 156 
individual level VTTs. From Equation 4 it can readily be seen why it is necessary to add these 157 

extra nodes. In the term 
1

T
n n
t t

t

y bvtt

 the sum across choice tasks t = 1...T is taken. Since there are 158 

T+1 choice tasks in total and one is randomly taken out to serve as the dependent choice task, 159 
these sums depend on the particular choice task that is left out. As a result, the recovered VTT 160 
depends on the random manifestation of the selection of the T+1th choice task. Clearly, this is 161 
undesirable. For the logistic regression model, there is no need to add additional input variables 162 
(resembling the set of nodes associated with the choice task R). This issue can easily be resolved 163 
by using the average of the received bids interacted with the choices, see Equation 5 where 164 

 n
ybvtt respectively denotes the average of the accepted BVTTs for decision maker n across all 165 

T+1 choice tasks.      166 
 167 


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 168 

3 Empirical results 169 

3.1 VTT distribution 170 

To recover the individual level VTTs we apply Equation 5 for each respondent. Figure 1 shows 171 
histograms of the recovered VTT distributions. First, we look at the left-hand side plot. In this 172 
plot we see the VTT distributions for the WTP and WTA domains. It shows that a substantial 173 
number of respondents have a negative VTT, especially in the WTP domain. Furthermore, as 174 
expected (see section 2.3) the WTP and WTA distributions are similar: the WTA distribution is 175 
the same as the WTP distribution only shifted to the right by a little less than 5 euro per hour. 176 
This was expected given Equation 4, where it can be seen that the WTP-WTA gap, and given our 177 

choice of normalisation, equals 1T
WTP bvtt   . Using the estimates of Table 1 this boils down to a 178 

constant 4.94 euro/h. 179 
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 180 
To obtain the reference free VTT we compute the arithmetic mean across the VTTs of the WTP 181 
and WTA domains. Here, we deviate from the approach taken in Van Cranenburgh and 182 
Kouwenhoven (under review) who use the geometric mean. We use the arithmetic mean because 183 
of the substantial share of respondents for whom a negative VTT is recovered, especially in the 184 
WTP domain. Specifically, in case we would use the geometric mean, we would not be able to 185 
derive a reference free VTT for 23% of the respondents. By using the arithmetic mean, we partly 186 
resolve this problem, although still for 9.6% of the respondents also the arithmetic mean is 187 
negative. For the remaining analyses, we set their VTTs to zero (hence the spike at x = 0 in the 188 
right-hand side plot in Figure 1).  189 
 190 

 191 
Figure 1: WTP and WTA VTT distribution (left), reference free VTT distribution (right) 192 

 193 

3.2 Comparison to other VTT methods 194 

In this section we compare the recovered VTT distribution using the logistic regression model to 195 
the VTT distribution recovered using the ANN based method (section 3.2.1) as well as to 196 
parametric and nonparametric methods presented in Van Cranenburgh and Kouwenhoven (under 197 
review) (section 3.2.2). Comparison of the results of the logistic regression model to those of the 198 
ANN will give insights on the extent to which the logistic regression model is a good proxy for 199 
the ANN. A large discrepancy between the two models indicates the logistic model is poorly able 200 
to capture the relations captured by the ANN, while a small discrepancy indicates the opposite. 201 
Hence, it can shed light on what is the cost of making the CK method more transparent by 202 
replacing the ANN with a logistic regression model. Comparisons of the logistic regression model 203 
to existing parametric and nonparametric methods can provide insight on how well the method 204 
performs relative to current VTT practice. 205 
 206 
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3.2.1 Logistic regression model vs. ANN 207 

Figure 2 scatters the VTT of the logistic regression against the VTT of the ANN based method. 208 
The plot shows that the logistic regression model is a fair proxy for the ANN. The VTT 209 
predictions of the two methods are strongly correlated (the Pearson product-moment correlation 210 
coefficient is ρ = 0.88). To further investigate the correspondence between the two methods, a 211 
smoothing spline fit is added. This spline is close to the y = x line, especially between VTT = 10 212 
and 30 euro/h. This shows that in this domain the average of the predicted VTTs is fairly similar 213 
across models. Discrepancies are particularly noticeable at x <10 euro/h and at x > 30 euro/h. The 214 
discrepancy at x = 0 is due to the fact that the logistic regression model recovers a VTT of zero 215 
for 9.6% of the respondents, against 0.14% by the ANN-based CK method. The discrepancy at 216 
the x > 30 euro/h could be due to that the data becomes thinner populated, and hence the spline 217 
becomes more driven by outliers. Alternative, this is due to the fact that the ANN captures effects 218 
(e.g. nonlinearities) which the logistic regression model is blind for, resulting in systematic 219 
(downward) bias by the logistic regression model.  220 
 221 

 222 
Figure 2: Scatter plot: VTT logistic regression model vs. VTT ANN 223 

 224 

3.2.2 Logistic regression model vs. existing VTT methods 225 

Figure 3 shows the Cumulative Density Functions (CDFs) of the VTT distribution, recovered 226 
using the Logistic regression model (purple, both plots), the ANN-based CK method (blue, both 227 
plots), an RV model with a lognormal distribution VTT distribution (orange, left plot), 228 
Rouwendal’s method (Rouwendal et al. 2010) (green, right plot) and the semi nonparametric 229 
approach (cyan, right plot) developed by Fosgerau and Bierlaire (2007). The key result of Figure 230 
3  is that the shape of the VTT distribution recovered by the logistic regression model is in line 231 
with that of the other methods. The most noticeable difference as compared to the other methods 232 
is that the logistic regression model predicts a relatively thin right-hand side tail. 233 
 234 
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 235 
Figure 3: Cross-validation of shape 236 

 237 

4 Relation to Random Valuation 238 

The logistic regression model in this approach can be casted in an RV model form. This is 239 
possible since a logit transformation is in the core of both the logistic regression model and the 240 
RV model. However, it is crucial to notice that while it is mathematically possible to specify the 241 
logistic regression model in RV form, we do not conceive the logistic regression model, and by 242 
extension the ANN, to be a disaggregate choice model. Given the data-driven nature of CK’s 243 
method, they try to approximate the individual specific choice models fn. 244 
 245 
To show how the logistic regression model can mathematically be specified as an RV model 246 
recall that in our notation subscript 1 and 2 respectively denote the slow and cheap alternative and 247 
the fast and expensive alternatives. This is similar to conventional notation for RV models. In RV 248 
models the utility of alternative 1 and 2 are respectively given by V1 = μ·BVTT and V2 = μ·VTT, 249 
where μ is interpreted as a scale parameters. To specify the logistic regression model in this form, 250 

we subtract 1
1

T n
bvtt Tbvtt 

  from 1
nv  and 2

nv  in Equation 3 (see Equation 6). This is inconsequential 251 

because only the difference between 1
nv  and 2

nv  matters for logit transformations. 252 
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 254 

Next, we substitute 1T
bvtt   , and multiply 2

nv  by  , which yields Equation 7. 255 
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 256 
Finally, we obtain our logistic regression model in RV form, where ~ indicate that the estimates 257 
are rescaled (Equation 8).  258 
 259 
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 260 
Looking at Equation 8 we see that the logistic regression model derived from the CK method can 261 
be casted in an RV form that looks fairly conventional. Actually, the only unconventional term in 262 
the VTT equation is the second term. This term lays bare the fundamental difference between 263 
theory and data-driven methods. From a theory-driven perspective, this term is odd as it goes 264 
against choice modeller’s orthodoxy to use previous choices in utility functions. In a disaggregate 265 
model of choice behaviour this term does not make sense, as the utility difference between two 266 
alternatives should not depend on the choices made in earlier choice tasks. However, as noted 267 
before, we do not conceive the logistic regression model as a disaggregate model of choice 268 
behaviour: there is no underlying concept as utility. It tries to approximate the underlying choice 269 
models. Therefore, from a data-driven perspective it makes good sense to use the previous 270 
choices as a cue for the next ones in case they help the analyst to make more accurate predictions 271 
(in our case for the individual level VTTs). 272 
 273 
For the sake of completeness we estimated the logistic regression model casted in RV form. Table 274 
2 reports the estimation results for this model (Model I), alongside the estimation results of 275 
standard RV model (Model II). The latter model is the same as Model I, but with βy·bvtt fixed to 276 
zero. Note that for clarity of exposition we here ignore the socio-demographic variables. The 277 
Pythonbiogeme syntax for Model I is reported in Appendix A. In Table 2 we see that, as 278 
expected, the model fit and model estimates of Model I are very similar to those reported in Table 279 
1. The difference in model fits is due to the fact that here we ignored the socio-demographic 280 
variables; the difference in estimates across the two tables is mainly due to differences in 281 
parametrisation related to the scale (which is inconsequential).  282 
 283 
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Table 2: RV estimation results 284 

 285 

 286 

5 Conclusions 287 

In this research note we replaced the ANN in CK’s method by a logistic regression model. 288 
Thereby, we shed light on how the ANN in this method recovers the VTT distribution. Our 289 
results show that the logistic regression model is a fair proxy for the ANN, in the sense that we 290 
find a strong correlation in terms of the predicted VTTs by both methods. Although the ANN 291 
clearly outperforms the logistic regression model in terms of prediction performance, there are 292 
two advantages for using a logistic regression model over an ANN. First, the logistic regression 293 
model is tractable, while the ANN is largely a black box. Second, it is relatively easy to apply: the 294 
logistic regression can be conducted in software packages choice modellers are familiar with, like 295 
Biogeme (Bierlaire 2016) and STATA. Nonetheless, given the decisive role of the VTT in Cost 296 
Benefit Analysis, it is worthwhile to invest considerable efforts to obtain an as accurate as 297 
possible VTT estimate. Therefore, the enhanced performance provided by the ANN over the 298 
logistic regression model can be worth the extra efforts. In light of the black box nature of ANNs, 299 
we believe it is good practice when applying CK’s method to start with a logistic regression 300 
model, and built it into an ANN after having gained understanding on the data and confidence in 301 
the method.  302 
 303 
Finally, this research note explored the fundamental relation between CK’s method with a logistic 304 
regression model and an RV model. We find that the key difference between CK’s method with a 305 
logistic regression model and an RV model can be traced back to one term. This term is the 306 
interaction between the previous choices made and the received BVTTs. This term lays bare the 307 
fundamental difference between theory and data-driven methods. In a theory driven perspective, 308 
the analyst aims to understand behaviour by creating models of disaggregate choice behaviour. In 309 
this perspective, this term does not make sense as the utility difference between two alternatives 310 
should not depend on the choices made in earlier choice tasks. In data-driven perspective, on the 311 
other hand, the analyst aims to best explain the observed choices in the data in order to make as 312 

Model

No. observations

No. parameters

Null LogLikelihood

Final LogLikelihood

ρ ²

Est. SE t-stat p-val Est. SE t-stat p-val

Intercept

δ 3.510 0.588 5.97 0.00 11.30 0.726 15.58 0.00

t = 1…T

β y ·bvtt 0.319 0.011 30.16 0.00 0.000 fixed

t = T+1

mu 0.132 0.004 29.65 0.00 0.085 0.003 26.53 0.00

βWTA 0.000 fixed 0.000 fixed

βEL -1.610 0.716 -2.25 0.02 -3.270 0.983 -3.32 0.00

βEG -2.590 0.739 -3.50 0.00 -4.160 1.020 -4.10 0.00

βWTP -5.250 0.821 -6.39 0.00 -6.870 1.110 -6.16 0.00

-3162.8

0.22

(I) CK method with Logistic 
regression model

(II) Random Valuation MNL model

5832

5

-4042.4

5832

6

-4042.4

-2506.8

0.38
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accurate as possible future predictions. In this perspective, this terms makes good sense, i.e. as 313 
long as is helps to improve the predictions of the model. Therefore, in the context of VTT 314 
research, ultimately the choice between using a theory-driven or data-driven approach boils down 315 
to what is considered more important: having an elegant behavioural underpinned model or 316 
having more accurate VTT estimates.     317 
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